Achieving the desired level of satisfaction for a decision-maker in any decision-making scenario is considered a challenging endeavor because minor modifications in the process might lead to incorrect findings and inaccurate decisions. In order to maximize the decision-maker's satisfaction, this paper proposes a Single-valued Neutrosophic Geometric Programming model based on pentagonal fuzzy numbers. The decision-maker is typically assumed to be certain of the parameters, but in reality, this is not the case, hence the parameters are presented as neutrosophic fuzzy values. The decision-maker, with this strategy, is able to achieve varying levels of satisfaction and dissatisfaction for each constraint and even complete satisfaction for certain constraints. Here the decision maker aims to achieve the maximum level of satisfaction while maintaining the level of hesitation and minimizing dissatisfaction in order to retain an optimum solution. Furthermore, transforming the objective function into a constraint adds one more layer to the Ndimensional multi-parametrizes and . The advantages of this multi-parametrized proposed method over the existing ones are proven using numerical examples.