Abstract-We present a simple and straightforward approximate approach to removing resonant artifacts that arise in the material parameters extracted near half-wavelength resonances that arise from transmission/reflection (T/R) measurements on low-loss materials. In order to determine material parameters near one such λ/2 resonance, by means of the 1st-order regressions for the input impedance of the sample-loaded transmission line, we approximate the characteristic impedance of the samplefilled section that is, in turn, dependent either on the relative wave impedance in a coaxial transmission line or on the relative permeability in a rectangular waveguide case. The other material parameters are then found, supplemented with the refractive index obtained from the conventional T/R method. This method applies to both coaxial transmission line and rectangular waveguide measurements. Our approach is validated by use of S-parameters simulated for a low-loss magnetic material, and is also applied to determine the relative permittivity and permeability from S-parameters measured for nylon and lithium-ferrite samples. The results are discussed as compared to those from the well-known Nicolson-Ross-Weir (NRW) method and are experimentally compared to those from the Baker-Jarvis (BJ) method as well.