The basolateral membrane of the thick ascending loop of Henle (TALH) of the mammalian kidney is highly enriched in Na+/K+ ATPase and has been shown by electrophysiological methods to be highly conductive to Cl-. In order to study the Cl- conductive pathways, membrane vesicles were isolated from the TALH-containing region of the porcine kidney, the red outer medulla, and Cl- channel activity was determined by a 36Cl uptake assay where the uptake of the radioactive tracer is driven by the membrane potential (positive inside) generated by an outward Cl- gradient. The accumulation of 36Cl- inside the vesicles was found to be dependent on the intravesicular Cl- concentration and was abolished by clamping the membrane potential with valinomycin. The latter finding indicated the involvement of conductive pathways. Cl- channel activity was also observed using a fluorescent potential-sensitive carbocyanine dye, which detected a diffusion potential induced by an imposed inward Cl- gradient. The anion selectivity of the channels was Cl- greater than NO3- = I- much greater than gluconate. Among the Cl- transport inhibitors tested, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPAB), 4,4'-diisothiocyano-stilbene-2,2'-disulfonate (DIDS), and diphenylamine-2-carboxylate (DPC) showed IC50 of 110, 200 and 550 microM, respectively. Inhibition of 36Cl uptake by NPPAB and two other structural analogues was fully reversible, whereas that by DIDS was not. The nonreactive analogue of DIDS, 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS), was considerably less inhibitory than DIDS (25% inhibition at 200 microM). The irreversible inhibition by DIDS was prevented by NPPAB, whereas DPC was ineffective, consistent with its low inhibitory potency.(ABSTRACT TRUNCATED AT 250 WORDS)