This report documents the design and performance of a second-generation phi meter used in multi-scale experimental applications. A constructed second-generation phi meter is implemented in bench and 2/5 th scale experiments to demonstrate the instrument's ability to conduct global and local equivalence ratio measurements and gas species concentrations of combustion products (i.e., carbon dioxide, water vapor, and oxygen) without knowledge of the sampled fuel composition. Bench-scale experiments evaluated the second-generation phi meter's functionality by introducing known fuel-air ratios into the instrument and verifying measurements via the carbon to hydrogen ratio and mass balance. The bench-scale experiments selected methane, propane, and propene as the fuels of interest. The 2/5 th scale experiments implemented two second-generation phi meters in a series of 25 kW methane backdraft experiments. Backdraft experiments provided an ideal setting to test the phi meter's performance by subjecting the instrument to a transient heterogeneous gas mixture. The phi meters' sampling location was positioned such that the extracted gas samples fed into the instrument were unknown. Global and local equivalence ratio measurements made in the 2/5 th scale compartment were compared to independent gas analyzer and gas chromatograph measurements. In the bench-scale experiments, the global equivalence ratio, water vapor concentration, and carbon to hydrogen ratio measurements are in fair agreement with their expected values. Real-time global and local equivalence ratio and carbon to hydrogen ratio measurements obtained during a backdraft experiment were observed to increase as the fuel concentration within the 2/5 th scale compartment increased. Real-time global and local equivalence ratios were verified by the independent instrumentation.