The specificity of the CD4 T-cell immune response to influenza virus is influenced by the genetic complexity of the virus and periodic encounters with variant subtypes and strains. In order to understand what controls CD4 T-cell reactivity to influenza virus proteins and how the influenza virus-specific memory compartment is shaped over time, it is first necessary to understand the diversity of the primary CD4 T-cell response. In the study reported here, we have used an unbiased approach to evaluate the peptide specificity of CD4 T cells elicited after live influenza virus infection. We have focused on four viral proteins that have distinct intracellular distributions in infected cells, hemagglutinin (HA), neuraminidase (NA), nucleoprotein, and the NS1 protein, which is expressed in infected cells but excluded from virion particles. Our studies revealed an extensive diversity of influenza virus-specific CD4 T cells that includes T cells for each viral protein and for the unexpected immunogenicity of the NS1 protein. Due to the recent concern about pandemic avian influenza virus and because CD4 T cells specific for HA and NA may be particularly useful for promoting the production of neutralizing antibody to influenza virus, we have also evaluated the ability of HA-and NA-specific CD4 T cells elicited by a circulating H1N1 strain to cross-react with related sequences found in an avian H5N1 virus and find substantial cross-reactivity, suggesting that seasonal vaccines may help promote protection against avian influenza virus.In recent decades, investigators studying both murine and human T-cell responses to influenza virus have succeeded in identifying peptide epitopes from immunized or vaccinated individuals that are the targets of CD4 T cells. These studies suggest a considerable diversity in CD4 responses. Epitopes derived from hemagglutinin (HA), neuraminidase (NA), nuclear protein (NP), polymerase (PB1 and PB2), matrix (M1), and nonstructural protein (NS1) have all been identified (9, 19, 25-28, 32, 61, 64, 85, 86). Our own laboratory previously analyzed the peptide specificity of CD4 T cells in the primary response of HLA-DR1 transgenic mice toward a human isolate of influenza virus and found that the CD4 T-cell repertoire specific for HA alone was diverse and encompassed at least 30 different peptide epitopes (63). In general, studies with humans have been much less systematic than those with the mouse because of the difficulty in obtaining lymphocyte samples from recently infected individuals and because of the complexity of major histocompatibility complex (MHC) molecules expressed in humans. However, recent studies with MHC class II tetramer reagents (19,61,64,72,86) have permitted the visualization of CD4 T cells specific for influenza virus directly ex vivo or after a brief (10-to 14-day) in vitro expansion. Those studies have led to the conclusion that the repertoire of CD4 T cells is more diverse than that of CD8 T cells and that CD4 T cells that are specific for most influenza virus proteins can be ...