B-type natriuretic peptide (BNP) is a circulating biomarker that is mainly applied in heart failure (HF) diagnosis and to monitor disease progression. Because some identical amino acid sequences occur in the precursor and metabolites of BNP, undesirable cross-reactions are common in immunoassays. This review first summarizes current analytical methods, such as immunoassay- and mass spectrometry (MS)-based approaches, including the accuracy of measurement and the inconsistency of the results. Second, the review presents some promising approaches to resolve the current barriers in clinical BNP measurement, such as how to decrease cross-reactions and increase the measurement consistency. Specific approaches include research on novel BNP assays with higher-specificity chemical antibodies, the development of International System of Units (SI)-traceable reference materials, and the development of structure characterization methods based on state-of-the-art ambient and ion mobility MS technologies. The factors that could affect MS analysis are also discussed, such as biological sample cleanup and peptide ionization efficiency. The purpose of this review is to explore and identify the main problems in BNP clinical measurement and to present three types of approaches to resolve these problems, namely, materials, methods and instruments. Although novel approaches are proposed here, in practice, it is worth noting that the BNP-related peptides including unprocessed proBNP were all measured in clinical BNP assays. Therefore, approaches that aimed to measure a specific BNP or proBNP might be an effective way for the standardization of a particular BNP form measurement, instead of the standardization of “total” immunoreactive BNP assays in clinical at present.