Clostridium autoethanogenum
and
Clostridium ljungdahlii
are physiologically and genetically very similar strict anaerobic acetogens capable of growth on carbon monoxide as sole carbon source. While exact nutritional requirements have not been reported, we observed that for growth, the addition of vitamins to media already containing yeast extract was required, an indication that these are fastidious microorganisms. Elimination of complex components and individual vitamins from the medium revealed that the only organic compounds required for growth were pantothenate, biotin and thiamine. Analysis of the genome sequences revealed that three genes were missing from pantothenate and thiamine biosynthetic pathways, and five genes were absent from the pathway for biotin biosynthesis. Prototrophy in
C. autoethanogenum
and
C. ljungdahlii
for pantothenate was obtained by the introduction of plasmids carrying the heterologous gene clusters
panBCD
from
Clostridium acetobutylicum
, and for thiamine by the introduction of the
thiC-purF
operon from
Clostridium ragsdalei
. Integration of
panBCD
into the chromosome through allele-coupled exchange also conveyed prototrophy.
C. autoethanogenum
was converted to biotin prototrophy with gene sets
bioBDF
and
bioHCA
from
Desulfotomaculum nigrificans
strain CO-1-SRB, on plasmid and integrated in the chromosome. The genes could be used as auxotrophic selection markers in recombinant DNA technology. Additionally, transformation with a subset of the genes for pantothenate biosynthesis extended selection options with the pantothenate precursors pantolactone and/or beta-alanine. Similarly, growth was obtained with the biotin precursor pimelate combined with genes
bioYDA
from
C. acetobutylicum
. The work raises questions whether alternative steps exist in biotin and thiamine biosynthesis pathways in these acetogens.
Electronic supplementary material
The online version of this article (10.1007/s00253-019-09763-6) contains supplementary material, which is available to authorized users.