Phosphorus (P) is an essential element for all life forms and a finite resource. P cycle plays a vital role in regulating primary productivity, making it a limiting nutrient for agricultural production and increasing the development of fertilizers through extractive mining. However, excessive P may cause detrimental environmental effects on aquatic and agricultural ecosystems. As a result, there is a pressing need for conservation and management of P loads through analytical techniques to measure P and precisely determine P speciation. Here, we explore a new 2D sorbent structure (GO-PDDA) for sensing orthophosphate in aqueous samples. The sorbent mimics a group of phosphate-binding proteins in nature and is expected to bind orthophosphate in solution. Laser-induced graphene (LIG) was coated with GO-PDDA using a drop-cast method. Electrochemical impedance spectroscopy was used as a transduction technique for electrochemical sensing of orthophosphate (HPO42−) and selectivity assay for chloride, sulfate and nitrate in buffer at pH 8. The analytical sensitivity was estimated to be 347 ± 90.2 Ω/ppm with a limit of detection of 0.32 ± 0.04 ppm. Selectivity assays demonstrate that LIG-GO-PDDA is 95% more selective for ortho-P over sulfate and 80% more selective over chloride and nitrate. The developed sensor can be reused after surface regeneration with an acidic buffer (pH 5), with slight changes in sensor performance. Our results show that the sorbent structure is a promising candidate for developing electrochemical sensors for environmental monitoring of orthophosphate and may provide reliable data to support sustainable P management.