Three cases of metabolic bone disease in the setting of metastatic neuroendocrine tumor (NET) are illustrated with associated etiopathologies. One of these cases harbored mixed lesions in the form of vertebral metastasis (biopsy proven) while the other skeletal lesions were caused due to metabolic bone disease related to multiple parathyroid adenomas. While the metastatic lesion was positive on 68Ga-DOTATATE positron emission tomography-computed tomography (PET-CT), the lesions of metabolic bone disease were negative and the 18F-fluoride PET-CT demonstrated the features of metabolic bone scan. Similar picture of metabolic bone disease [18-sodium fluoride (18NaF)/68Ga-DOTATATE mismatch] was documented in the other two patients, while fluorodeoxyglucose (FDG)-PET-CT was variably positive, primarily showing tracer uptake in the metabolic skeletal lesions of the patient with hypersecretion of parathyroid hormone-related protein (PTHrP) by the underlying tumor. Discordance between 18NaF PET-CT and 68Ga-DOTATATE PET-CT serves as a good marker for identification of metabolic bone disease and diagnosing such a clinical entity. In a patient of NET with metabolic bone disease and hypercalcemia, thus, two causes need to be considered: (i) Coexisting parathyroid adenoma in multiple endocrine neoplasia type I (MEN-I) syndrome and (ii) humoral hypercalcemia of malignancy (HHM) related to hypersecretion of PTHrP by the tumor. The correct diagnosis of metabolic bone disease in metastatic NET can alter the management substantially. Interestingly, peptide receptor radionuclide therapy (PRRT) can emerge as a very promising treatment modality in patients of metabolic bone disease caused by HHM in the setting of NET.