The growth rate of populations usually varies over time, often in a density-dependent manner. Despite the large amount of literature on density dependence, relatively little is known of the mechanisms underlying the density-dependent processes affecting populations, especially per capita natality. We performed a 20-year study on the density dependence of brood production in two duck species differing in the stability of habitat use. Our study was conducted in a boreal watershed in southern Finland. We predicted that a diving duck common goldeneye Bucephala clangula, with more stable habitat use, would show stronger density dependence than a dabbling duck common teal Anas crecca. We investigated reproductive output in relation to the duck pair density per se as well as in relation to per capita food availability. As predicted, the reproductive output of the goldeneye showed a more density-dependent pattern than that of the teal. The number of goldeneye broods per pair decreased when the pair density increased. This was not the case with the teal. However, when the breeding success was measured by taking into account per capita food availability, both species showed density dependence. Our results imply that the occurrence of density dependent processes may vary even in sympatric ducks breeding in the same, relatively stable landscape. Our analysis also emphasizes that it is important to take into account per capita resource availability when studying the density dependence of breeding success. Both findings have important implications for the management and conservation of species.