Signal transduction pathways are important in physiology and pathophysiology. Targeted drugs aim at modifying pathogenic pathway activity, e.g., in cancer. Optimal treatment choice requires assays to measure pathway activity in individual patient tissue or cell samples. We developed a method enabling quantitative measurement of functional pathway activity based on Bayesian computational model inference of pathway activity from measurements of mRNA levels of target genes of the pathway-associated transcription factor. Oestrogen receptor, Wnt, and PI3K-FOXO pathway assays have been described previously. Here, we report model development for androgen receptor, Hedgehog, TGFβ, and NFκB pathway assays, biological validation on multiple cell types, and analysis of data from published clinical studies (multiple sclerosis, amyotrophic lateral sclerosis, contact dermatitis, Ewing sarcoma, lymphoma, medulloblastoma, ependymoma, skin and prostate cancer). Multiple pathway analysis of clinical prostate cancer (PCa) studies showed increased AR activity in hyperplasia and primary PCa but variable AR activity in castrate resistant (CR) PCa, loss of TGFβ activity in PCa, increased Wnt activity in TMPRSS2:ERG fusion protein-positive PCa, active PI3K pathway in advanced PCa, and active PI3K and NFκB as potential hormonal resistance pathways. Potential value for future clinical practice includes disease subtyping and prediction and targeted therapy response prediction and monitoring.