Abstract:Objective: The intoxications caused by 2,4-dinitrophenol (2,4-DNP), even death, have been frequently reported in recent years. This study aims to investigate the dynamic changes of plasma toxin concentration and explore the clinical value of resin hemoperfusion (HP) in the treatment of patients with acute 2,4-DNP poisoning. Methods: We reported 16 cases of acute 2,4-DNP poisoning through occupational exposure due to ignoring the risk of poisoning. The blood samples were collected from the 14 survivors. According to the different treatments of resin HP, the survivors were divided into routine HP (n=5) and intensive HP (n=9) groups. Ultra high performance liquid chromatography/ tandem mass spectroscopy (UPLC-MS/MS) was used to detect the 2,4-DNP concentration in plasma in this study. Results: The 14 survivors recovered very well after treatment. The initial plasma 2,4-DNP concentrations (C 1 ) of survivors ranged from 0.25 to 41.88 µg/ml (mean (12.56±13.93) µg/ml). A positive correlation existed between initial plasma 2,4-DNP concentration (C 1 ) and temperature. The elimination of 2,4-DNP was slow and persistent, and the total clearance rates of plasma toxin from the 1st to 3rd day (R 3 ), the 3rd to 7th day (R 3-7 ), and the 1st to 7th day (R 7 ), were only (53.03±14.04)%, (55.25±10.50)%, and (78.29±10.22)%, respectively. The plasma toxin was cleared up to 25 d after poisoning in most of the patients. The R 3 , R 3-7 , and R 7 in the intensive HP group were all apparently higher than those in the routine HP group, with statistical significance (P<0.05). Simultaneously, the elimination half-life (t 1/2 ) of 2,4-DNP in the intensive HP group was apparently shorter than that in the routine HP group, with statistical significance (P<0.05). Conclusions: The clinicians should be aware of this slow and persistent process in the elimination of plasma 2,4-DNP. Higher initial plasma toxin concentration resulted in a more severe fever for the patient. According to the limited data, longer and more frequent resin HP may accelerate to eliminate the poison.