“…* t[i]) + 0.1 * random.randrange(0, 2) * np.cos( 0.001 * random.randrange(3,6) * t[i]) attivita_completate_trattativa = int(0.1 * random.randrange(0, 9) * np.cos(0.007 * random.randrange(1, 7) * t[i]) + 0.8 * random.randrange(0, 3) * np.cos( 0.001 * random.randrange(3, 5) * t[i])) ratio_attivita_settore_completate_totale_attivita_completate = 0.1 * random.randrange(0, 3) * np.tan(0.009 * random.randrange(2, 7) * t[i]) + 0.7 * random.randrange(0, 4) * np.tan( 0.001 * random.randrange(3, 4) * t[i]) ratio_attivita_settore_non_completate_totale_attivita_non_completate = 0.1 * random.randrange(0, 4) * np.cos(0.006 * random.randrange(1, 8) * t[i]) + 0.2 * random.randrange(0, 8) * np.tan( 0.001 * random.randrange(3, 7) * t[i]) valutazione_rischio = 0.1 * random.randrange(0, 2) * np.sin(0.008 * random.randrange(2, 9) * t[i]) + 0.4 * random.randrange(0, 9) * np.cos( 0.001 * random.randrange(3, 4) * t[i]) referenze_acquisite = int(0.1 * random.randrange(0, 3) * np.cos(0.002 * random.randrange(5, 8) * t[i]) + 0.6 * random.randrange(0, 4) * np.sin( 0.001 * random.randrange(3, 9) * t[i])) variabilita_servizi_venduti = int(0.1 * random.randrange(0, 7) * np.sin(0.001 * random.randrange(1, 2) * t[i]) + 0.5 * random.randrange(0, 6) * np.sin( 0.001 * random.randrange(3, 8) * t[i])) order_processing_time = 0.1 * random.randrange(0, 6) * np.sin(0.003 * random.randrange(2, 3) * t[i]) + 0.4 * random.randrange(0, 3) * np.cos( 0.001 * random.randrange…”