A mathematical model is developed to study the characteristics of blood flowing through an arterial segment in the presence of a single and a couple of stenoses. The governing equations accompanied by an appropriate choice of initial and boundary conditions are solved numerically by Taylor Galerkin's time-stepping equation, and the numerical stability is checked. The pressure, velocity, and stream functions have been solved by Cholesky's method. Furthermore, an in-depth study of the flow pattern reveals the separation of Reynolds number for the 30 and 50% blockage of single stenosis and 30% blockage of multi-stenosis. The present results predict the excess pressure drop across the stenosis site than it does for the inlet of the artery with single and multiple stenosis and the increase in the velocity is observed at the center of the artery.