In this paper, I establish the categorical structure necessary to interpret
dependent inductive and coinductive types. It is well-known that dependent type
theories \`a la Martin-L\"of can be interpreted using fibrations. Modern
theorem provers, however, are based on more sophisticated type systems that
allow the definition of powerful inductive dependent types (known as inductive
families) and, somewhat limited, coinductive dependent types. I define a class
of functors on fibrations and show how data type definitions correspond to
initial and final dialgebras for these functors. This description is also a
proposal of how coinductive types should be treated in type theories, as they
appear here simply as dual of inductive types. Finally, I show how dependent
data types correspond to algebras and coalgebras, and give the correspondence
to dependent polynomial functors.Comment: In Proceedings FICS 2015, arXiv:1509.0282