2017
DOI: 10.3934/bdia.2017020
|View full text |Cite
|
Sign up to set email alerts
|

A category-based probabilistic approach to feature selection

Abstract: <abstract> <p>A high dimensional and large sample categorical data set with a response variable may have many noninformative or redundant categories in its explanatory variables. Identifying and removing these categories usually improve the association but also give rise to significantly higher statistical reliability of selected features. A category-based probabilistic approach is proposed to achieve this goal. Supportive experiments are presented.</p> </abstract>

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?