Quorum sensing, also known as cell-density sensing in the unicellular eukaryote Dictyostelium discoideum, is required for efficient entry into the differentiation and development segment of its life cycle. Quorum sensing is accomplished by simultaneously secreting and sensing the glycoprotein Conditioned Medium Factor, or CMF. When the density of starving cells is high, CMF levels are high, which leads to aggregation followed by development. Here, we describe the role of pldB, a gene coding for a putative phospholipase D (PLD) homologue, in quorum sensing. We find that in submerged culture, adding butanol, an inhibitor of PLDcatalyzed phosphatidic acid production, allows cells to bypass the requirement for CMF mediated quorum sensing and aggregate at low cell density. Deletion of pldB mimics the presence of butanol, allowing cells to aggregate at low cell density. pldB ؊ cells also initiate and finish aggregation rapidly. Analysis of early developmental gene expression in pldB ؊ cells reveals that the cyclic AMP receptor cAR1 is expressed at higher levels earlier than in wild-type cells, which could explain the rapid aggregation phenotype. As would be predicted, cells overexpressing pldB are unable to aggregate even at high cell density. Adding CMF to these pldB ؊ overexpressing cells does not rescue aggregation. Both of these phenotypes are cell autonomous, as mixing a small number of pldB ؊ cells with wild-type cells does not cause the wild-type cells to behave like pldB ؊ cells.