The need for sustainable, biodegradable materials to address environmental challenges, such as oil-water separation, is growing. Cellulose-based absorbents offer an eco-friendly alternative to synthetic materials. However, their hydrophobicity must be enhanced for efficient application. In this study, cellulose-based sorbents derived from Kraft and half-bleached chemo-thermomechanical pulp (BCTMP) were hydrophobized using silanization and alkyl ketene dimer (AKD) techniques. Hydrophobic properties were successfully imparted using methyltrimethoxysilane (MTMOS), n-octyltriethoxysilane (NTES), and N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane (AATMS), with water contact angles ranging from 120° to 140°. The water sorption capacity was significantly reduced to below 1 g/g, whereas the oil sorption capacity remained high (19–28 g/g). The most substantial reduction in water vapor absorption (3–6%) was observed for the MTMOS- and AATMS-silanized samples. These results demonstrate the potential of hydrophobized cellulose-based sorbents as sustainable alternatives for oil-water separation, contributing to environmentally friendly water treatment solutions.