2019
DOI: 10.48550/arxiv.1903.06558
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A central limit theorem for integrals of random waves

Abstract: We derive a central limit theorem for the mean-square of random waves in the high-frequency limit over shrinking sets. Our proof applies to any compact Riemannian manifold of arbitrary dimension, thanks to the universality of the local Weyl law. The key technical step is an estimate capturing some cancellation in a triple integral of Bessel functions, which we achieve using Gegenbauer's addition formula.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?