Recent studies show right hemisphere has a unique contribution to emotion processing. The present study investigated EEG using non-linear measures during emotional processing in PD patients with respect to motor symptom asymmetry (i.e., most affected body side). We recorded 14-channel wireless EEGs from 20 PD patients and 10 healthy age-matched controls (HC) by eliciting emotions such as happiness, sadness, fear, anger, surprise and disgust. PD patients were divided into two groups, based on most affected body side and unilateral motor symptom severity: left side-affected (LPD, n = 10) or right side-affected PD patients (RPD, n = 10). Nonlinear analysis of these emotional EEGs were performed by using approximate entropy, correlation dimension, detrended fluctuation analysis, fractal dimension, higher order spectra, hurst exponent (HE), largest Lyapunov exponent and sample entropy. The extracted features were ranked using analysis of variance based on F value. The ranked features were then fed into classifiers namely fuzzy K-nearest neighbor and support vector machine to obtain optimal performance using minimum number of features. From the experimental results, we found that (a) classification performance across all frequency bands performed well in recognizing emotional states of LPD, RPD, and HC; (b) the emotion-specific features were mainly related to higher frequency bands; and (c) predominantly LPD patients (inferred right-hemisphere pathology) were more impaired in emotion processing compared to RPD, as showed by a poorer classification performance. The results suggest that asymmetric neuronal degeneration in PD patients may contribute to the impairment of emotional communication.