Microfibrous composites (MCs) are novel materials with unique structures and excellent functional properties, showing great potential in industrial applications. The investigation of the physicochemical properties of MCs is significant for accommodating the rapid development of high-efficiency chemical engineering industries. In this review, the characteristics, synthesis and applications of different types of previously reported MCs are discussed according to the constituent fibres, including polymers, metals and nonmetals. Among the different types of MCs, polymer MCs have a facile synthesis process and adjustable fibre composition, making them suitable for many complex situations. The high thermal and electrical conductivity of metal MCs enables their application in strong exothermic, endothermic and electrochemical reactions. Nonmetallic MCs are usually stable and corrosion resistant when reducing and oxidizing environments. The disadvantages of MCs, such as complicated synthesis processes compared to those of particles or powders, high cost, insufficient thorough study, and unsatisfactory regeneration effects, are also summarized. As a result, a more systematic investigation of MCs remains necessary. Despite the advantages and great application potential of microfibrous composites, much effort remains necessary to advance them to the industrial level in the chemical engineering industry.