Abstract:Symmetry, such as structural symmetry, color symmetry and so on, plays an important role in graph coloring. In this paper, we use structural symmetry and color symmetry to study the characterization for the neighbor-distinguishing index of planar graphs. Let G be a simple graph with no isolated edges. The neighbor-distinguishing edge coloring of G is a proper edge coloring of G such that any two adjacent vertices admit different sets consisting of the colors of their incident edges. The neighbor-distinguishing… Show more
“…Furthermore, for planar graphs with ∆ ≥ 16, Wang and Huang [12] characterized their neighbor distinguishing edge chromatic numbers. Afterwards, this condition is improved to the case ∆ ≥ 14 in [13] and further to the case ∆ ≥ 13 in [14].…”
Neighbor distinguishing colorings of graphs represent powerful tools for solving the channel assignment problem in wireless communication networks. They consist of two forms of coloring: neighbor distinguishing edge coloring, and neighbor distinguishing total coloring. The neighbor distinguishing edge (total) coloring of a graph G is an edge (total) coloring with the requirement that each pair of adjacent vertices contains different color sets. The neighbor distinguishing edge (total) chromatic number of G is the smallest integer k in cases where a neighbor distinguishing edge (total) coloring exists through the use of k colors in G. The maximum average degree of G is the maximum of the average degree of its non-empty subgraphs. In this paper, we characterize the neighbor distinguishing edge (total) chromatic numbers of graphs with a maximum average degree less than four by means of the discharging method.
“…Furthermore, for planar graphs with ∆ ≥ 16, Wang and Huang [12] characterized their neighbor distinguishing edge chromatic numbers. Afterwards, this condition is improved to the case ∆ ≥ 14 in [13] and further to the case ∆ ≥ 13 in [14].…”
Neighbor distinguishing colorings of graphs represent powerful tools for solving the channel assignment problem in wireless communication networks. They consist of two forms of coloring: neighbor distinguishing edge coloring, and neighbor distinguishing total coloring. The neighbor distinguishing edge (total) coloring of a graph G is an edge (total) coloring with the requirement that each pair of adjacent vertices contains different color sets. The neighbor distinguishing edge (total) chromatic number of G is the smallest integer k in cases where a neighbor distinguishing edge (total) coloring exists through the use of k colors in G. The maximum average degree of G is the maximum of the average degree of its non-empty subgraphs. In this paper, we characterize the neighbor distinguishing edge (total) chromatic numbers of graphs with a maximum average degree less than four by means of the discharging method.
Structural symmetry, anti-symmetry, or asymmetry represent a foundational property that, for chemical compounds, often determines their chemical and biological activity [...]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.