We study Auslander-Reiten components of an artin algebra with bounded short cycles, namely, there exists a bound for the depths of maps appearing on short cycles of non-zero non-invertible maps between modules in the given component. First, we give a number of combinatorial characterizations of almost acyclic Auslander-Reiten components. Then, we show that an Auslander-Reiten component with bounded short cycles is closely related to the connecting component of a tilted quotient algebra. In particular, the number of such components is finite and each of them is almost acyclic with only finitely many DTr-orbits. As an application, we show that an artin algebra is representation-finite if and only if its module category has bounded short cycles. This includes a well known result of Ringel's, saying that a representation-directed algebra is representation-finite.