Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. The effect of the molecular weight of poly[9,9-didecanefluorene-alt-(bis-thienylene) benzothiadiazole] (PF10TBT) on the photovoltaic performance of fullerene-based bulk heterojunction solar cells is investigated. An increase in molecular weight of two orders of magnitude results in a 30% increase of the short-circuit current and a rise of the fill factor from 0.45 to 0.63. Electron and hole transport are found to be virtually unaffected by changing molecular weight, which means that space-charge effects do not play a role in low molecular weight devices. Using optical modeling and numerical device simulations, we demonstrate that at low molecular weight the efficiency is mainly limited by a short lifetime of bound electron-hole pairs. This short lifetime prohibits efficient dissociation and is attributed to a deficiency in phase separation for low molecular weights.