Stress, a state of body tension, sometimes caused by increased levels of tyrosine (Tyr) in the body, can lead to serious illnesses such as depression, irritability, anxiety, damage to the thyroid gland, and insomnia. The body can be provided with an adequate concentration of tyrosine by taking pharmaceutical products or by dietary intake. Therefore, this study presents the development of a new enzyme sensor for the quantification of Tyr in pharmaceuticals. A screen-printed carbon electrode (SPCE) was modified with the conductive polymer (CP) polypyrrole (PPy) doped with hexacyanoferrate (II) anion (FeCN), the polymer having been selected for its excellent properties, namely, permeability, conductivity, and stability. The enzyme laccase (Lacc) was subsequently immobilized in the polymer matrix and cross-linked with glutaraldehyde, as this enzyme is a thermostable catalyst, greatly improving the performance of the biosensor. The electrochemical method of analysis of the new device, Lacc/PPy/FeCN/SPCE, was cyclic voltammetry (CV), and chronoamperometry (CA) contributed to the study of changes in the biosensor with doped PPy. CV measurements confirmed that the Lacc/PPy/FeCN/SPCE biosensor is a sensitive and efficient platform for Tyr detection. Thus, this enzyme sensor showed a very low limit of detection (LOD) of 2.29 × 10−8 M, a limit of quantification (LOQ) of 7.63 × 10−8 M, and a very high sensitivity compared to both devices reported in the literature and the PPy/FeCN/SPCE sensor. Quantitative determination in pharmaceuticals was performed in L-Tyr solution of different concentrations ranging from 0.09 to 7 × 10−6 M. Validation of the device was performed by infrared spectrometry (FT-IR) on three pharmaceuticals from different manufacturers and with different Tyr concentrations.