Abstract. An efficient descent method for unconstrained optimization problems is line search method in which the step size is required to choose at each iteration after a descent direction is determined. There are many ways to choose the step sizes, such as the exact line search, Armijo line search, Goldstein line search, and Wolfe line search, etc. In this paper we propose a new inexact line search for a general descent method and establish some global convergence properties. This new line search has many advantages comparing with other similar inexact line searches. Moreover, we analyze the global convergence and local convergence rate of some special descent methods with the new line search. Preliminary numerical results show that the new line search is available and efficient in practical computation.