2019
DOI: 10.1016/j.cam.2019.02.015
|View full text |Cite
|
Sign up to set email alerts
|

A class of new extended shift-splitting preconditioners for saddle point problems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 13 publications
(4 citation statements)
references
References 28 publications
0
4
0
Order By: Relevance
“…In this section, using the idea of References 18 and 59 for nonsymmetric saddle point problems, the following new splitting of frakturA$$ \mathfrak{A} $$ is given as alignleftalign-1Aalign-2=đ’«PESS−𝒬PESSalign-1align-2=trueα^P+lAlBprefix−.2emlBTtrueÎČ^Q−trueα^P+false(lprefix−1false)Afalse(lprefix−1false)Bprefix−.2emfalse(lprefix−1false)BTtrueÎČ^Q, where trueα^≄0$$ \hat{\alpha}\ge 0 $$, trueÎČ^>0$$ \hat{\beta}>0 $$, l∈ℝ+$$ l\in {\mathbb{R}}^{+} $$, and P∈ℝmprefix×m$$ P\in {\mathbb{R}}^{m\times m} $$, Q∈ℝnprefix×n$$ Q\in {\mathbb{R}}^{n\times n} $$ are symmetric positive definite matrices. Therefore, applying (2) emerges the following new method.…”
Section: Description and Implementation Of The Pess$$ Pess $$ Precond...mentioning
confidence: 99%
See 3 more Smart Citations
“…In this section, using the idea of References 18 and 59 for nonsymmetric saddle point problems, the following new splitting of frakturA$$ \mathfrak{A} $$ is given as alignleftalign-1Aalign-2=đ’«PESS−𝒬PESSalign-1align-2=trueα^P+lAlBprefix−.2emlBTtrueÎČ^Q−trueα^P+false(lprefix−1false)Afalse(lprefix−1false)Bprefix−.2emfalse(lprefix−1false)BTtrueÎČ^Q, where trueα^≄0$$ \hat{\alpha}\ge 0 $$, trueÎČ^>0$$ \hat{\beta}>0 $$, l∈ℝ+$$ l\in {\mathbb{R}}^{+} $$, and P∈ℝmprefix×m$$ P\in {\mathbb{R}}^{m\times m} $$, Q∈ℝnprefix×n$$ Q\in {\mathbb{R}}^{n\times n} $$ are symmetric positive definite matrices. Therefore, applying (2) emerges the following new method.…”
Section: Description and Implementation Of The Pess$$ Pess $$ Precond...mentioning
confidence: 99%
“…Huang et al 18 recently utilized constant l$$ l $$ within the matrix frakturA$$ \mathfrak{A} $$ to introduce the following parameterized GSS$$ GSS $$ preconditioner false(PGSSfalse)$$ (PGSS) $$ frakturA=đ’«PGSSprefix−𝒬PGSS=()arrayα^I+lAarraylBarray−lBTarrayÎČ^Iprefix−()arraylA+α^I−AarraylB−Barray−(l−1)BTarrayÎČ^I, such that trueα^≄0$$ \hat{\alpha}\ge 0 $$, trueÎČ^>0$$ \hat{\beta}>0 $$. Wang et al 59 presented a class of new extended shift‐splitting (NESS$$ NESS $$) preconditioners for solving symmetric positive definite saddle point and they presented the NESS$$ NESS $$ preconditioner as đ’«NES<...…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations