In this article, we are concerned with the equations of Krylov type on compact Hermitian manifolds, which are in the form of the linear combinations of the elementary symmetric functions of a Hermitian matrix. Under the assumption of the 𝒞-subsolution, we obtain a priori estimates in
Γ
k
−
1
{\Gamma }_{k-1}
cone. By using the method of continuity, we prove an existence theorem, which generalizes the relevant results. As an application, we give an alternative way to solve the deformed Hermitian Yang-Mills equation on compact Kähler threefold.