Two-stage risk-neutral stochastic optimization problem has been widely studied recently. The goals of our research are to construct a two-stage distributionally robust optimization model with risk aversion and to extend it to multi-stage case. We use a coherent risk measure, Conditional Value-at-Risk, to describe risk. Due to the computational complexity of the nonlinear objective function of the proposed model, two decomposition methods based on cutting planes algorithm are proposed to solve the two-stage and multi-stage distributional robust optimization problems, respectively. To verify the validity of the two models, we give two applications on multi-product assembly problem and portfolio selection problem, respectively. Compared with the risk-neutral stochastic optimization models, the proposed models are more robust.