A classification of left-invariant pseudo-Riemannian metrics on some nilpotent Lie groups
Yuji Kondo
Abstract:It is known that a connected and simply-connected Lie group admits only one left-invariant Riemannian metric up to scaling and isometry if and only if it is isomorphic to the Euclidean space, the Lie group of the real hyperbolic space, or the direct product of the three dimensional Heisenberg group and the Euclidean space of dimension n − 3. In this paper, we give a classification of left-invariant pseudo-Riemannian metrics of an arbitrary signature for the third Lie groups with n ≥ 4 up to scaling and automor… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.