The incidences of various esophageal diseases (e.g., congenital esophageal stenosis, tracheoesophageal fistula, esophageal atresia, esophageal cancer) are increasing, but esophageal tissue is difficult to be recovered because of its weak regenerative capability. There are no commercialized off-the-shelf alternatives to current esophageal reconstruction and regeneration methods. Surgeons usually use ectopic conduit tissues including stomach and intestine, presumably inducing donor site morbidity and severe complications. To date, polymer-based esophageal substitutes have been studied as an alternative. However, the fabrication techniques are nearly limited to creating only cylindrical outer shapes with the help of additional apparatus (e.g., mandrels for electrospinning) and are unable to recapitulate multi-layered characteristic or complex-shaped inner architectures. 3D bioprinting is known as a suitable method to fabricate complex free-form tubular structures with desired pore characteristic. In this study, we developed a extrusion-based 3D printing technique to control the size and the shape of the pore in a single extrusion process, so that the fabricated structure has a higher flexibility than that fabricated in the conventional process. Based on this suggested technique, we developed a bioprinted 3D esophageal structure with multi-layered features and converged with biochemical microenvironmental cues of esophageal tissue by using decellularizedbioinks from mucosal and muscular layers of native esophageal tissues. the two types of esophageal tissue deriveddecellularized extracellular matrix bioinks can mimic the inherent components and composition of original tissues with layer specificity. This structure can be applied to full-thickness circumferential esophageal defects and esophageal regeneration. The esophageal tissue refers to the hollow organ between the oropharynx and the stomach, which allows food to pass to the stomach through peristalsis. Congenital or acquired esophageal disorders such as esophageal cancer, malignancy, and esophageal achalasia usually require reconstruction of the defect site after the surgery and stomach, small and large intestine, and skin tissues are used to repair the esophagus tissues 1-3. Unfortunately, surgical resection and ablation can cause postoperative complications and various surgical morbidities 4-6. Therefore, a tissue engineering-based approach has been proposed as a promising alternative for reconstruction of circumferential esophageal defects 7-9 .