We investigate a Duffing oscillator driven by random noise which is assumed to be a harmonic function of the Wiener process. We show that the correlation time of the noise has a strong effect on the form of the response stationary probability density functions. It represents the so-called reentrance transitions, i.e. for the same noise intensity the probability density function has an identical modality for both the small and the large correlation time but a different modality for the moderate correlation time. The transitions are observed for both the single-well and twin-well potential case. A new approach is used to study the response probability density function. It is based on analysis of hyperbolic systems.