Background
Virtual reality (VR) is increasingly being used for the assessment and treatment of impairments arising from acquired brain injuries (ABIs) due to perceived benefits over traditional methods. However, no tailored options exist for the design and implementation of VR for ABI rehabilitation and, more specifically, traumatic brain injury (TBI) rehabilitation. In addition, the evidence base lacks systematic reviews of immersive VR use for TBI rehabilitation. Recommendations for this population are important because of the many complex and diverse impairments that individuals can experience.
Objective
This study aims to conduct a two-part systematic review to identify and synthesize existing recommendations for designing and implementing therapeutic VR for ABI rehabilitation, including TBI, and to identify current evidence for using immersive VR for TBI assessment and treatment and to map the degree to which this literature includes recommendations for VR design and implementation.
Methods
This review was guided by PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). A comprehensive search of 11 databases and gray literature was conducted in August 2019 and repeated in June 2020. Studies were included if they met relevant search terms, were peer-reviewed, were written in English, and were published between 2009 and 2020. Studies were reviewed to determine the level of evidence and methodological quality. For the first part, qualitative data were synthesized and categorized via meta-synthesis. For the second part, findings were analyzed and synthesized descriptively owing to the heterogeneity of data extracted from the included studies.
Results
In the first part, a total of 14 papers met the inclusion criteria. Recommendations for VR design and implementation were not specific to TBI but rather to stroke or ABI rehabilitation more broadly. The synthesis and analysis of data resulted in three key phases and nine categories of recommendations for designing and implementing VR for ABI rehabilitation. In the second part, 5 studies met the inclusion criteria. A total of 2 studies reported on VR for assessment and three for treatment. Studies were varied in terms of therapeutic targets, VR tasks, and outcome measures. VR was used to assess or treat impairments in cognition, balance, and anxiety, with positive outcomes. However, the levels of evidence, methodological quality, and inclusion of recommendations for VR design and implementation were poor.
Conclusions
There is limited research on the use of immersive VR for TBI rehabilitation. Few studies have been conducted, and there is limited inclusion of recommendations for therapeutic VR design and implementation. Future research in ABI rehabilitation should consider a stepwise approach to VR development, from early co-design studies with end users to larger controlled trials. A list of recommendations is offered to provide guidance and a more consistent model to advance clinical research in this area.