The development of the Internet of Things (IoT) paradigm and its significant spread as an affordable data source has brought many challenges when pursuing efficient data collection, distribution, and storage. Since such hierarchical logical architecture can be inefficient and costly in many cases, Data Reduction (DR) solutions have arisen to allow data preprocessing before actual transmission. To increase DR performance, researchers are using Artificial Intelligence (AI) techniques and models towards reducing sensed data volume. AI for DR on the edge is investigated in this study in the form of an Systematic Literature Review (slr) encompassing major issues such as data heterogeneity, AI-based techniques to reduce data, architectures, and contexts of usage. An SLR is conducted to map the state-of-the-art in this area, highlighting the most common challenges and potential research trends in addition to a proposed taxonomy.