The achievement of the targets of coordinated control of PM2.5 and O3 and the carbon peaking and carbon neutrality depend on the development of pollution and greenhouse gas monitoring technologies. Optical monitoring technology, based on its technical characteristics of high scalability, high sensitivity and wide-targets detection, has obvious advantages in pollution/greenhouse gases monitoring and has become an important direction in the development of environmental monitoring technology. At present, a system of environmental optical monitoring technology with differential optical absorption spectroscopy (DOAS), cavity ring-down spectroscopy (CRDS), light detection and ranging (LIDAR), laser heterodyne spectroscopy (LHS), tunable diode laser absorption spectroscopy (TDLAS), fourier transform infrared spectroscopy (FTIR) and fluorescence assay by gas expansion (FAGE) as the main body has been established. However, with the promotion of “reduction of pollution and carbon emissions” strategy, there have been significant changes in the sources of pollution/greenhouse gases, emission components and emission concentrations, which have put forward new and higher requirements for the development of monitoring technologies. In the future, we should pay more attention to the development of new optical monitoring techniques and the construction of stereoscopic monitoring system, the interdisciplinarity (among mathematics, physics, chemistry and biology, etc.), and the monitoring of greenhouse gases and research on atmospheric chemistry.