In recent years approximate Bayesian computation (ABC) methods have become popular in population genetics as an alternative to full-likelihood methods to make inferences under complex demographic models. Most ABC methods rely on the choice of a set of summary statistics to extract information from the data. In this article we tested the use of the full allelic distribution directly in an ABC framework. Although the ABC techniques are becoming more widely used, there is still uncertainty over how they perform in comparison with full-likelihood methods. We thus conducted a simulation study and provide a detailed examination of ABC in comparison with full likelihood in the case of a model of admixture. This model assumes that two parental populations mixed at a certain time in the past, creating a hybrid population, and that the three populations then evolve under pure drift. Several aspects of ABC methodology were investigated, such as the effect of the distance metric chosen to measure the similarity between simulated and observed data sets. Results show that in general ABC provides good approximations to the posterior distributions obtained with the full-likelihood method. This suggests that it is possible to apply ABC using allele frequencies to make inferences in cases where it is difficult to select a set of suitable summary statistics and when the complexity of the model or the size of the data set makes it computationally prohibitive to use full-likelihood methods.
T HE genetic patterns observed today in most speciesare the result of complex histories, which include demographic events such as population admixture, expansions, and/or collapses. The detection and quantification of such events relies on the fact that different scenarios leave a specific genetic signature in present-day populations, as well as on knowledge from other sources (e.g. ecology, biogeography, archeology) to define plausible models to explain such patterns. Recent population genetic modeling has seen the development of a number of statistical approaches that aim at extracting as much information as possible from the full allelic distributions (Griffiths and Tavaré 1994;Wilson and Balding 1998;Beaumont 1999;Beerli and Felsenstein 2001;Chikhi et al. 2001;Storz et al. 2002). These approaches aim at computing the likelihood L(u), i.e., the probability P M (D j u) of generating the observed data D under some demographic model M, defined by a set of parameters u ¼ (u 1 , . . . , u k ). In Bayesian statistics, the posterior density is used to make inferences as it reflects the probability of the parameters given the data, and it is obtained through the relationship P(u j D) } L(u)P(u), where P(u) summarizes prior knowledge (or lack thereof) regarding u before the data are observed (Beaumont and Rannala 2004). For most demographic models there are no explicit likelihood functions or the likelihood cannot be derived analytically. Therefore, full-likelihood approaches rely on methods that explore the parameter space efficiently, such as...