2024
DOI: 10.20517/ir.2024.03
|View full text |Cite
|
Sign up to set email alerts
|

A collaborative siege method of multiple unmanned vehicles based on reinforcement learning

Muqing Su,
Ruimin Pu,
Yin Wang
et al.

Abstract: A method based on multi-agent reinforcement learning is proposed to tackle the challenges to capture escaping Target by Unmanned Ground Vehicles (UGVs). Initially, this study introduces environment and motion models tailored for cooperative UGV capture, along with clearly defined success criteria for direct capture. An attention mechanism integrated into the Soft Actor-Critic (SAC) is leveraged, directing focus towards pivotal state features pertinent to the task while effectively managing less relevant aspect… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 27 publications
0
0
0
Order By: Relevance