A magic three-qubit Veldkamp line of W ( 5 , 2 ) , i.e., the line comprising a hyperbolic quadric Q + ( 5 , 2 ) , an elliptic quadric Q − ( 5 , 2 ) and a quadratic cone Q ^ ( 4 , 2 ) that share a parabolic quadric Q ( 4 , 2 ) , the doily, is shown to provide an interesting model for the Veldkamp space of the doily. The model is based on the facts that: (a) the 20 off-doily points of Q + ( 5 , 2 ) form ten complementary pairs, each corresponding to a unique grid of the doily; (b) the 12 off-doily points of Q − ( 5 , 2 ) form six complementary pairs, each corresponding to a unique ovoid of the doily; and (c) the 15 off-doily points of Q ^ ( 4 , 2 ) , disregarding the nucleus of Q ( 4 , 2 ) , are in bijection with the 15 perp-sets of the doily. These findings lead to a conjecture that also parapolar spaces can be relevant for quantum information.