<p><span lang="EN-US">Recruitment, or job search, is increasingly used throughout the world by a large population of users through various channels, such as websites, platforms, and professional networks. Given the large volume of information related to job descriptions and user profiles, it is complicated to appropriately match a user's profile with a job description, and vice versa. The job search approach has drawbacks since the job seeker needs to search a job offers in each recruitment platform, manage their accounts, and apply for the relevant job vacancies, which wastes considerable time and effort. The contribution of this research work is the construction of a recommendation system based on the job offers extracted from the web and on the e-portfolios of job seekers. After the extraction of the data, natural language processing is applied to structured data and is ready for filtering and analysis. The proposed system is a content-based system, it measures the degree of correspondence between the attributes of the e-<span>portfolio with those of each job offer of the same list of competence specialties using the Euclidean distance, the result is classified with a decreasing way to display the</span> most relevant to the least relevant job offers.</span></p>