Lettuce (Lactuca sativa) is one of the most consumed and cultivated vegetables globally. Its breeding is focused on the improvement of yield and disease resistance. However, potential detrimental or beneficial health effects for the consumer are often not targeted in the breeding programs. Here, a bioengineered intestinal tubule was used to assess the intestinal efficacy of extracts from five plant accessions belonging to four Lactuca species. These four species include the domesticated L. sativa, closely related wild species L. serriola, and phylogenetically more distant wild relatives L. saligna and L. virosa. We assessed the epithelial barrier integrity, cell viability, cell attachment, brush border enzyme activity, and immune markers. Extracts from L. sativa cv. Salinas decreased cell attachment and brush border enzyme activity. However, extracts from the non-edible wild species L. saligna and L. virosa reduced the epithelial barrier functions, cell attachment, cell viability, and brush border enzyme activity. Since wild species represent a valuable germplasm pool, the bioengineered intestinal tubules could open ways to evaluate the safety and nutritional properties of the lettuce breeding material originating from crosses with wild Lactuca species.