2022
DOI: 10.1109/tgrs.2022.3196050
|View full text |Cite
|
Sign up to set email alerts
|

A Combined Stripe Noise Removal and Deblurring Recovering Method for Thermal Infrared Remote Sensing Images

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 22 publications
(6 citation statements)
references
References 60 publications
0
1
0
1
Order By: Relevance
“…As mentioned in the introduction, some repetitive texture structures in the image can be suppressed by adjusting their frequency spectrum. This kind of strategy is commonly applied in image processing of remote sensing (Jinsong et al., 2003; Zeng et al., 2020; Zhang et al., 2022). Considering that the stripes are not strictly periodic, and the adjustment of the frequency spectrum often shows the oscillating Gibbs effect in the space, we have designed an iterative method that combines convolution with Gaussian smoothing.…”
Section: Methodsmentioning
confidence: 99%
“…As mentioned in the introduction, some repetitive texture structures in the image can be suppressed by adjusting their frequency spectrum. This kind of strategy is commonly applied in image processing of remote sensing (Jinsong et al., 2003; Zeng et al., 2020; Zhang et al., 2022). Considering that the stripes are not strictly periodic, and the adjustment of the frequency spectrum often shows the oscillating Gibbs effect in the space, we have designed an iterative method that combines convolution with Gaussian smoothing.…”
Section: Methodsmentioning
confidence: 99%
“…13 reveals a pronounced correlation between the optimal 𝜖𝜖 values and the specific intervals of stripe intensities. More specifically, within the intensity ranges of [0-2], [2][3][4][5][6], [6][7][8][9][10], [10][11][12][13][14][15], and [15][16][17] as the 𝜖𝜖 values were sequentially set to 1, 3, 5, 10, 20, the resultant images achieved the best PSNR values. Based on these findings, we have selected [2,6,10,15] as our reference points for threshold values, applying these in both our simulation experiments and real-image testing.…”
Section: Parameter Analysismentioning
confidence: 99%
“…are arranged in rows or columns [2][3][4][5][6]. The existence of nonuniformity noise has detrimental effects on image quality, diminishes the signal-to-noise ratio, and significantly influences subsequent processing tasks, such as target detection.…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…Data tunggal artinya suhu yang didapatkan dari perangkat ini berupa satu data saja seperti ditemui pada thermo gun. Sedangkan data majemuk dapat ditemui pada perangkat yang luarannya adalah gambar pemetaan suhu objek seperti pada kamera thermal [12][13] [14][15] [16]. Kelemahan pada pembacaan suhu memanfaatkan fenomena infra merah yaitu hasil pembacaan yang tidak stabil dan akurasinya yang jauh jika dibandingkan dengan pengukuran dengan alat ukur yang bersentuhan langsung dengan object yang ingin diukur.…”
Section: Pendahuluanunclassified