The representation of number symbols is assumed to be unique, and not shared with other ordinal sequences. However, little research has examined if this is the case, or whether properties of symbols (such as spatial complexity) affect ordinal learning. Two studies were conducted to investigate if the property of spatial complexity affects learning ordinal sequences. In Study 1, 46 adults made a series of judgements about two novel symbol sets (Gibson and Sunú z). The goal was to find a novel symbol set that could be ordered by spatial complexity. In Study 2, 84 adults learned to order nine novel symbols (Sunú z) with a paired comparison task, judging which symbol was 'larger' (whereby the larger symbol became physically larger as feedback), and were then asked to rank the symbols. Participants were assigned to either a condition where there was a relationship between spatial complexity and symbol order, or a condition where there was a random relationship. Of interest was whether learning an ordered list of symbols would be facilitated by the spatial complexity of the novel symbols. Findings suggest spatial complexity affected learning ability, and that pairing spatial complexity with relational information can facilitate learning ordinal sequences. This suggests that the implicit cognitive representation of number may be a more general feature of ordinal lists, and not exclusive to number per se.