2015
DOI: 10.1016/j.compfluid.2015.06.015
|View full text |Cite
|
Sign up to set email alerts
|

A compact finite differences exact projection method for the Navier–Stokes equations on a staggered grid with fourth-order spatial precision

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
12
0
2

Year Published

2016
2016
2023
2023

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 19 publications
(14 citation statements)
references
References 49 publications
0
12
0
2
Order By: Relevance
“…For the Dirichlet-type boundary condition, the one-sided fourth-order compact scheme proposed by [51] is used, which is…”
Section: Spatial Discretizationmentioning
confidence: 99%
See 2 more Smart Citations
“…For the Dirichlet-type boundary condition, the one-sided fourth-order compact scheme proposed by [51] is used, which is…”
Section: Spatial Discretizationmentioning
confidence: 99%
“…The applications of their method were given in [43]. In recent years, there has been increasing interest in utilizing the compact difference scheme for spatial discretization of the incompressible Navier-Stokes equations combined with the projection method for velocity-pressure decoupling [44][45][46][47][48][49][50][51][52][53]. Differences among these works can be classified into three aspects: (a) the first is the grid arrangement.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…O esquema LP-E possui a interessante característica de produzir segunda ordem de convergência, sem a necessidade de se incluir uma aproximação para o gradiente da pressão na equação do momento e sem a necessidade de corrigir as condições de contorno para u * . Visto que não foi encontrado na literatura método de projeção com as características do LP-E, esse método foi publicado no Journal Computer & Fluids [39]. Os próximos resultados utilizam apenas o LP-E.…”
Section: Resultsunclassified
“…• Desenvolvimento de um método de projeção para as equações de Navier-Stokes com variáveis primitivas e em malha deslocada [39,40]. Esse método é totalmente baseado em diferenças finitas compactas, incluindo a equação de Poisson.…”
Section: Introductionunclassified