Low-field 1 H NMR relaxometry is an important tool used to investigate on the most abundant components of intact foodstuffs based on relaxation parameters and amplitude of the NMR signals. In particular, information on water compartments, diffusion and movement can be obtained by detecting proton signals prevalently ascribable to H 2 O contained in foodstuffs. The main advantage of this technique is that it does not require any pretreatment of the sample and once developed, standard protocols based on rapid measurements can be easily transferred to quality control applications. An actual breakthrough for the low-field NMR application to food science has certainly been the development of unilateral NMR sensors. These devices present an attractive option for non-invasive assessment of compositional and microstructure of food materials. They are portable and allow easy sample access, which makes them attractive for quality control in industrial environments and directly on sealed packaged foods. A price to pay is the inhomogeneity of the magnetic field, which compromises the sensitivity of these devices. However, recent developments in unilateral magnets design offer larger sensitive volume, higher sensitivity and shorter dead times. In this brief review, we highlight the different uses of unilateral NMR devices in food analysis.