Nas áreas industriais emitem-se alertas de segurança em formato digital após a ocorrência de acidentes. Neste contexto, este trabalho propõe a criação de uma base de dados de alerta de seguranças, bem como uma comparação de técnicas de aprendizado de máquina para classificação de textos. A base de dados foi elaborada pelos autores, através de coleta de documentos públicos obtidos da internet. Classificadores clássicos, KNN, SVM, Naive Bayes, Árvores de decisão e Floresta Aleatórias foram aplicados à base de dados, sendo a melhor acurácia obtida pelo SVM com 0,79% seguido da Floresta Aleatória com 0,75%. Os resultados instigam a continuação do trabalho, pois uma base de dados pública de acidentes e alertas de segurança aumentam a divulgação destas informações.