Elucidation of the proteogenomic evolution of metastatic tumors may offer insight into the poor prognosis of patients harboring metastatic disease. We performed wholeexome and transcriptome sequencing, copy number alterations (CNA) and mass spectrometry-based quantitative proteomics of 37 lung adenocarcinoma (LUAD) and thymic carcinoma (TC) metastases obtained by rapid autopsy and found evidence of patient-specific, multi-dimensional heterogeneity. Extreme mutational heterogeneity was evident in a subset of patients whose tumors showed increased APOBEC-signature mutations and expression of APOBEC3 region transcripts compared to patients with lesser mutational heterogeneity. TP53 mutation status was associated with APOBEC hypermutators in our cohort and in three independent LUAD datasets. In a thymic carcinoma patient, extreme heterogeneity and increased APOBEC3AB expression was associated with a high-risk germline APOBEC3AB variant allele. Patients with CNA occurring late in tumor evolution had corresponding changes in gene expression and protein abundance indicating genomic instability as a mechanism of downstream transcriptomic and proteomic heterogeneity between metastases. Across all tumors, proteomic heterogeneity was greater than copy number and transcriptomic heterogeneity.