BackgroundMany national cardiovascular disease (CVD) risk factor management guidelines now recommend that drug treatment decisions should be informed primarily by patients’ multi-variable predicted risk of CVD, rather than on the basis of single risk factor thresholds. To investigate the potential impact of treatment guidelines based on CVD risk thresholds at a national level requires individual level data representing the multi-variable CVD risk factor profiles for a country’s total adult population. As these data are seldom, if ever, available, we aimed to create a synthetic population, representing the joint CVD risk factor distributions of the adult New Zealand population.Methods and resultsA synthetic population of 2,451,278 individuals, representing the actual age, gender, ethnicity and social deprivation composition of people aged 30–84 years who completed the 2013 New Zealand census was generated using Monte Carlo sampling. Each ‘synthetic’ person was then probabilistically assigned values of the remaining cardiovascular disease (CVD) risk factors required for predicting their CVD risk, based on data from the national census national hospitalisation and drug dispensing databases and a large regional cohort study, using Monte Carlo sampling and multiple imputation. Where possible, the synthetic population CVD risk distributions for each non-demographic risk factor were validated against independent New Zealand data sources.ConclusionsWe were able to develop a synthetic national population with realistic multi-variable CVD risk characteristics. The construction of this population is the first step in the development of a micro-simulation model intended to investigate the likely impact of a range of national CVD risk management strategies that will inform CVD risk management guideline updates in New Zealand and elsewhere.