Gene drives are engineered alleles that bias their own inheritance in offspring, enabling the spread of specific traits throughout a population. Targeting female fertility genes in a gene drive can be an efficient strategy for population suppression. In this study, we investigated nine female fertility genes in Drosophila melanogaster using CRISPR-based homing gene drives. Employing a multiplexed gRNA approach to prevent formation of functional resistance alleles, we aimed to maintain high drive conversion efficiency with low fitness costs in female drive carriers. Drive efficiency was assessed in individual crosses and had varied performance across different target genes. Notably, drives targeting the octopamine beta2 receptor (oct) and stall (stl) genes exhibited the highest drive conversion rates and were further tested in cages. A drive targeting stl successfully suppressed a cage population with a high release frequency, though suppression failed in another replicate cage with lower initial release frequency. Fitness costs in female drive carriers were observed in test cages, impacting the overall efficiency of population suppression. Further tests on the fertility of these lines using individual crosses indicated that some fitness costs were possibly due to the maternal deposition of Cas9 combined with new gRNA expression, which would only occur in progeny of drive males when testing split drives with separate Cas9 (when mimicking cages with complete drives) but not for complete drive systems. This could enable success in complete drives with higher maternal Cas9 deposition, even if cage experiments in split drives fail. Our findings underscore the potential and challenges of assessing gene drives for population control, providing valuable insights for optimizing and testing suppression gene drive designs.