2 1 MSi O n n+(M = Au, Ag, Cu; n = 1, 2, 3) clusters were used as a cluster model to study the activation of oxygen molecules on single-atom catalysts. Struc-clusters were studied by density functional calculations with global optimization. For each n, the most stable structures are quite similar for different metal types, and the oxygen molecule prefers to be adsorbed onto M atoms. It is found that the activation degree of oxygen is higher on clusters with non-noble metal Cu than that of Ag or Au containing clusters, by comparing the changes of O-O bond length and vibrational frequency, natural charge population analysis, Fuzzy bond order analysis, and energy barriers of O 2 dissociation. CO oxidation was used as a probe reaction to study the reactivity of Cu-containing clusters, and it is found that the reactivity decreases with the increase of the size of silicon-oxygen clusters. Our results give a new aspect to understand the reaction mechanism of non-precious metal single-atom catalyst for oxygen activation with high efficiency.