2020
DOI: 10.1007/s42979-020-00180-5
|View full text |Cite
|
Sign up to set email alerts
|

A Comparative Study and Analysis of Time Series Forecasting Techniques

Abstract: Time series data abound in many realistic domains. The proper study and analysis of time series data help to make important decisions. Study of such data is very useful in many applications where there are trendy changes with time or specific seasonality as in electricity demand, cloud workload, weather and sales, cost of business products, etc. By understanding the nature of the time series and the objective of analysis, we have used different approaches to learn and extract meaningful information that can sa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
26
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
4
1

Relationship

0
9

Authors

Journals

citations
Cited by 56 publications
(27 citation statements)
references
References 12 publications
0
26
0
1
Order By: Relevance
“…Além da análise gráfica, foi realizada uma avaliação de uma métrica do modelo de predição. Para isso foi escolhida uma métrica bem utilizada em séries temporais, a RMSE (Root Mean Square Error), definida como a raiz quadrada do erro médio quadrático [Athiyarath et al 2020]. Essa métrica compara a diferença entre os valores preditos e os valores reais do conjunto de teste para verificar o desempenho preditivo do modelo.…”
Section: Resultsunclassified
“…Além da análise gráfica, foi realizada uma avaliação de uma métrica do modelo de predição. Para isso foi escolhida uma métrica bem utilizada em séries temporais, a RMSE (Root Mean Square Error), definida como a raiz quadrada do erro médio quadrático [Athiyarath et al 2020]. Essa métrica compara a diferença entre os valores preditos e os valores reais do conjunto de teste para verificar o desempenho preditivo do modelo.…”
Section: Resultsunclassified
“…A time series is a series of data points ordered in time which is used to predict the future of data. Time series may be stationary, seasonality or auto correlated (Athiyarath et al, 2020). They are represented using different data visualization techniques to uncover the hidden patterns in datasets.…”
Section: Time Series Analysismentioning
confidence: 99%
“…Time series modelling and forecasting have drawn significant attention in various domains such as finance, engineering, and statistics [1]. Thus, many research papers have focused on algorithms and techniques that can yield accurate performance in numerous practical applications [2]. Many vital techniques have been proposed in the literature for improving the accuracy and efficiency of time series modelling and forecasting.…”
Section: Introductionmentioning
confidence: 99%
“…Many vital techniques have been proposed in the literature for improving the accuracy and efficiency of time series modelling and forecasting. The conventional statistical techniques of time series of modelling and prediction commonly use a potential model, such as autoregressive-moving average, autoregressive integrated moving average, and vector autoregressive to model and forecast using time series data [2][3].…”
Section: Introductionmentioning
confidence: 99%